מחשבונים שלב אחר שלב:
מחשבון זה פותר \(F\left(x,\,y,\,y',\,y'',\dots,y^{\left(n\right)}\right)=0\) — משוואות דיפרנציאליות רגילות (ODE) מסדרים שונים, כולל:
משוואות ניתנות להפרדה: \(p\left(x\right)\mathrm{d}x=q\left(y\right)\mathrm{d}y\)
משוואות הומוגניות: \(y'=f\left(k\,x,\;k\,y\right)=f\left(x,\;y\right)\)
משוואות לינאריות מסדר ראשון: \(y'+a\left(x\right)\,y=b\left(x\right)\)
משוואות מהצורה: \(y'=f\left(\frac{a_1\,x+b_1\,y+c_1}{a\,x+b\,y+c}\right)\)
משוואות דיפרנציאליות של ברנולי: \(y'+a\left(x\right)\,y=b\left(x\right)\,y^n\)
משוואות ריקאטי: \(y'+a\left(x\right)\,y+b\left(x\right)\,y^2=c\left(x\right)\)
משוואות דיפרנציאליות מדויקות: \(P\left(x,\;y\right)\,\mathrm{d}x+Q\left(x,\;y\right)\,\mathrm{d}y=0\)
משוואות דיפרנציאליות לא מדויקות: \(\mu\cdot P\left(x,\;y\right)\,\mathrm{d}x+\mu\cdot Q\left(x,\;y\right)\,\mathrm{d}y=0\) — כאשר \(\mu\) הוא גורם אינטגרציה
משוואות דיפרנציאל שלם: \(\mathrm{d}\left(F\left(x,\,y\right)\right)=0\)
משוואות שאינן פתורות לנגזרת: \(F\left(x,\;y,\;y'\right)=0\)
משוואות מהצורה: \(F\left(x,\,y^{\left(k\right)},\,y^{\left(k+1\right)},\dots,y^{\left(n\right)}\right)=0\) ו-\(F\left(y,\,y',\,y''\,\dots,y^{\left(n\right)}\right)=0\)
משוואות דיפרנציאליות לינאריות עם מקדמים קבועים: \(y^{\left(n\right)}+a_{n-1}\,y^{\left(n-1\right)}+\ldots+a_0\,y=f\left(x\right)\)
משוואות קושי-אוילר: \(x^n\,y^{\left(n\right)}+a_{n-1}\,x^{n-1}\,y^{\left(n-1\right)}+\ldots+a_{1}\,x\,y'+a_0\,y=0\)
המחשבון גם פותר מערכות של משוואות דיפרנציאליות רגילות:
מערכות הומוגניות לינאריות עם מקדמים קבועים: \(X'\left(t\right)=A\,X\left(t\right)\)
מערכות לא-הומוגניות לינאריות עם מקדמים קבועים: \(X'\left(t\right)=A\,X\left(t\right)+f\left(t\right)\)
המחשבון גם פותר משוואות ומערכות עם תנאי התחלה (בעיות ערך התחלתי)
מחשבון זה פותר \(\displaystyle \int{f\left(x\right)\;\mathrm{d}x=F\left(x\right)+C}\) — אינטגרלים לא מסוימים צעד אחר צעד באמצעות השיטות והטכניקות הבאות:
נוסחאות אינטגרציה בסיסיות: \(\displaystyle\int{x^n}\;\mathrm{d}x=\dfrac{x^{n+1}}{n+1}+C,\;\left(n\neq-1\right)\), \(\displaystyle\int{a^x}\;\mathrm{d}x=\dfrac{a^x}{\ln\left(a\right)}+C\)\(\dots\)
כלל סכום והפרש: \(\displaystyle\int{\left(u\pm v\pm w\right)}\;\mathrm{d}x=\int{u}\;\mathrm{d}x\pm\int{v}\;\mathrm{d}x\pm\int{w}\;\mathrm{d}x\)
כלל הכפל בקבוע: \(\displaystyle\int{c\,f\left(x\right)}\;\mathrm{d}x=c\int{f\left(x\right)}\;\mathrm{d}x\)
כלל ההצבה: \(\displaystyle\int{f\left(x\right)}\;\mathrm{d}x=\left[\begin{array}{c}x=\varphi\left(t\right)\\\mathrm{d}x=\varphi'\left(t\right)\,\mathrm{d}t\end{array}\right]=\int{f\left(\varphi\left(t\right)\right)\,\varphi'\left(t\right)}\;\mathrm{d}t\)
אינטגרציה של פונקציות רציונליות: טריגונומטריות \(\mathrm{R}\left(\sin\left(x\right),\;\cos\left(x\right)\right)\); היפרבוליות \(\mathrm{R}\left(\sinh\left(x\right),\;\cosh\left(x\right)\right)\); שברים חלקיים \(\dfrac{P_k\left(x\right)}{Q_n\left(x\right)}\)
שיטת המקדמים הלא ידועים: פירוק לגורמים של פולינומים, אי-רציונליות לינארית-שבורה \(\mathrm{R}\left(x,\,\left(\dfrac{a\,x+b}{c\,x+d}\right)^{r_1,\dots,\,r_n}\right)\), שיטת אוסטרוגרדסקי-הרמיט \(\displaystyle\int{\dfrac{P\left(x\right)}{Q\left(x\right)}}=\dfrac{P_2\left(x\right)}{Q_2\left(x\right)}+\int{\dfrac{P_1\left(x\right)}{Q_1\left(x\right)}}\), אינטגרלים הכוללים שורשים ריבועיים של ביטויים ריבועיים \(\mathrm{R}\left(x, \sqrt{a\,x^2+b\,x+c}\right)\), שיטות ישירות \(\displaystyle\int{\dfrac{P_n\left(x\right)}{\sqrt{a\,x^2+b\,x+c}}}{\;\mathrm{d}x}\), \(\displaystyle\int{\dfrac{P_m\left(x\right)}{\left(x-\alpha\right)^n\,\sqrt{a\,x^2+b\,x+c}}}{\;\mathrm{d}x}\), \(\displaystyle\int{\dfrac{M\,x+N}{\left(x^2+p\,x+q\right)^n\,\sqrt{a\,x^2+b\,x+c}}}{\;\mathrm{d}x}\)
אינטגרציה בחלקים \(\displaystyle\int{u}{\;\mathrm{d}v}=u\,v-\int{v}{\;\mathrm{d}u}\), הצבות טריגונומטריות והיפרבוליות, הצבות אוילר, אינטגרלים של דיפרנציאלים בינומיים \(\displaystyle\int{x^m\,\left(a\,x^n+b\right)^p}{\;\mathrm{d}x}\)
מכפלות חזקות של \(\sin^n\left(x\right)\,\cos^m\left(x\right)\) ופונקציות היפרבוליות \(\sinh^n\left(x\right)\,\cosh^m\left(x\right)\)
נוסחאות אינטגרציה סטנדרטיות, אינטגרציה הכוללת ערכים מוחלטים, פונקציות מיוחדות \(\Gamma\left(s,\,x\right)\), \(\operatorname{Ei}\left(x\right)\), \(\operatorname{li}\left(x\right)\), \(\operatorname{Si}\left(x\right)\), \(\operatorname{Ci}\left(x\right)\), \(\operatorname{Shi}\left(x\right)\), \(\operatorname{Chi}\left(x\right)\), \(\operatorname{Li_2}\left(x\right)\), \(\operatorname{S}\left(x\right)\), \(\operatorname{C}\left(x\right)\), \(\operatorname{erf}\left(x\right)\), \(\operatorname{erfi}\left(x\right)\), כלל השרשרת ההפוך \(\displaystyle\int{\mathrm{d}\left(\mathrm{F}\left(x\right)\right)}\), הצבת ויירשטראס (טנגנס חצי הזווית), נוסחת אוילר \(e^{i\,x}=\cos(x)+i\,\sin(x)\)
התמרות אקספוננציאליות, לוגריתמיות, טריגונומטריות והיפרבוליות
הצבות אלגבריות וקיבוץ מחדש עם פישוט
מחשבון זה פותר \(\displaystyle\int\limits_{a}^{b}{f\left(x\right)}{\;\mathrm{d}x}\) — אינטגרלים מסוימים על ידי חישוב הפונקציה הקדומה והפעלת המשפט היסודי של החשבון האינפיניטסימלי, שימוש בתכונות סימטריה עבור פונקציות זוגיות או אי-זוגיות על קטעים סימטריים, ותכונות מחזוריות
עבור אינטגרלים לא אמיתיים, המחשבון מחשב גבולות באינסוף וגבולות חד-צדדיים בנקודות אי-רציפות בתוך קטע האינטגרציה
פונקציות מתמטיות נתמכות:
\(\ln\) \(\sin\) \(\cos\) \(\tan\) \(\cot\) \(\arctan\) \(\arcsin\) \(\arccos\) \(\operatorname{arccot}\) \(\sinh\) \(\cosh\) \(\tanh\) \(\coth\) \(\operatorname{sech}\) \(\operatorname{csch}\) \(\operatorname{arsinh}\) \(\operatorname{arcosh}\) \(\operatorname{artanh}\) \(\operatorname{arcoth}\) \(\operatorname{arcsec}\) \(\operatorname{arccsc}\) \(\operatorname{arsech}\) \(\operatorname{arcsch}\) \(\sec\) \(\csc\) \(\left|f\right|\)
המחשבון פותר משוואות מהצורה \(f\left(x\right)=0\), כולל:
קביעת תחום הפונקציה \(\mathrm{dom}\left(f\right)\)
משוואות לינאריות \(a\,x+b=0\)
משוואות ריבועיות עם מקדמים ממשיים ומרוכבים \(a\,x^2+b\,x+c=0\)
משוואות ממעלה שלישית מהצורה \(a\,x^3+b\,x^2+b\,x+a=0\)
משוואות ממעלה שלישית \(a\,x^3+b\,x^2+c\,x+d=0\)
משוואות ממעלה רביעית מהצורה \(a\,x^4+b\,x^3+c\,x^2\pm b\,x+a=0\) ו-\(a\,x^4+b\,x^3+c\,x^2+d\,x+\dfrac{a\,d^2}{b^2}=0\)
מכפלות של ארבעה איברים בסדרה חשבונית \(\left(a\,x+b\right)\,\left(a\,x+b+c\right)\,\left(a\,x+b+2\,c\right)\,\left(a\,x+b+3\,c\right)=d\)
משוואות אקספוננציאליות, לוגריתמיות, טריגונומטריות, היפרבוליות והפוכות שונות
יישום שיטת פרארי לפתרון משוואות ממעלה רביעית \(a\,x^4+b\,x^3+c\,x^2+d\,x+e=0\)
מציאת שורשים רציונליים \(x=\dfrac{m}{n}\) ופירוק לגורמים \(f_1\left(x\right)\cdots f_n\left(x\right)=0\)
פתרונות ידועים של משוואות טריגונומטריות, היפרבוליות והפוכות בסיסיות
מציאת שורשים של מספרים מרוכבים \(\sqrt[n]{a+i\,b}\)
הצבת טנגנס חצי הזווית \(\sin(x)=\dfrac{2\,t}{1+t^2}\) ו-\(\cos(x)=\dfrac{1-t^2}{1+t^2}\) כאשר \(t=\tan\left(\dfrac{x}{2}\right)\)
הבינום של ניוטון \((a+b)^n=a^n+C^1_n\,a^{n-1}\,b+\ldots+C^{n-1}_n\,a\,b^{n-1}+b^n\)
זהויות פולינומיאליות לסכומים והפרשים \(x^n+y^n\), \(x^n-y^n\)
צמצום איברים דומים והוצאת גורם משותף \(x^2+x\;\Rightarrow\; x\,(x+1)\)
הכפלה צולבת של שברים \(\dfrac{a}{b}=\dfrac{c}{d}\;\Rightarrow\;a\,d=b\,c\) והשלמה לריבוע \((a+b)^2+c\)
העלאה בחזקה משני האגפים לביטול לוגריתמים טבעיים
לוגריתמים מרוכבים \(\ln\left(a+i\,b\right)\) ונוסחת אוילר \(e^{i\,x}=\cos\left(x\right)+i\,\sin\left(x\right)\)
משוואות פונקציונליות בסיסיות \(f\left(g\left(x\right)\right) = f\left(r\left(x\right)\right)\;\Rightarrow\;g\left(x\right)=r\left(x\right)\)
מחשבון זה מחשב את הנגזרת של פונקציה \(f\left(x\right)\) או \(f\left(x,\,y,\,y',\dots,\,z,\,z',\dots\right)\) ומציג את הכללים ששימשו לחישוב הנגזרת.
הכללים הבאים מוגדרים:
נגזרות נפוצות של \(x\), \(\sin(x)\), \(\cos(x)\), \(\tan(x)\), \(\cot(x)\), \(e^x\), \(a^x\), \(\ln(x)\)\(\,\ldots\)
כלל הקבוע: \((c)'=0\)
כלל הכפל בקבוע: \(\left(c\,f(x)\right)'=c\,f'(x)\)
כלל הסכום: \(\left(f(x)+g(x)\right)'=f'(x)+g'(x)\)
כלל ההפרש: \(\left(f(x)-g(x)\right)'=f'(x)-g'(x)\)
כלל החזקה: \(\left(x^n\right)'=n\,x^{n-1}\)
כלל המכפלה: \(\left(f(x)\,g(x)\right)'=f(x)\,g'(x)+g(x)\,f'(x)\)
כלל המנה: \(\left(\dfrac{f(x)}{g(x)}\right)'=\dfrac{g(x)\,f'(x)-f(x)\,g'(x)}{\left(g(x)\right)^2}\)
כלל ההופכי: \(\left(\dfrac{1}{f(x)}\right)'=\dfrac{-f'(x)}{\left(f(x)\right)^2}\)
כלל השרשרת: \(\left(f\left(g(x)\right)\right)'=f'_g\left(g\right)\,g'(x)\)
ערך מוחלט: \(\left(\left|x\right|\right)'=\dfrac{x}{\left|x\right|}\)
פונקציית הסימן: \(\left(\operatorname{sgn}\left(f\right)\right)'=2\,\delta\left(x\right)\), כאשר \(\delta\) היא פונקציית הדלתא של דיראק
מחשבון זה מוצא את הגבול של פונקציה \(\displaystyle\lim_{x\to{a}}{f\left(x\right)}\) באמצעות התכונות הבאות:
גבול של קבוע \(\displaystyle\lim_{x\to{a}}C=C\)
כלל הכפלה בקבוע \(\displaystyle\lim_{x\to{a}}k\,f(x)=k\,\lim_{x\to{a}}f(x)\)
כלל הסכום וההפרש \(\displaystyle\lim_{x\to{a}}{f\left(x\right)\pm g\left(x\right)}=\lim_{x\to{a}}{f\left(x\right)}\pm\lim_{x\to{a}}{g\left(x\right)}\)
כלל המכפלה \(\displaystyle\lim_{x\to{a}}{f\left(x\right)\,g\left(x\right)}=\lim_{x\to{a}}{f\left(x\right)}\,\lim_{x\to{a}}{g\left(x\right)}\)
כלל המנה \(\displaystyle\lim_{x\to{a}}\dfrac{f(x)}{g(x)}=\dfrac{\displaystyle\lim_{x\to{a}}f(x)}{\displaystyle\lim_{x\to{a}}g(x)}\), אם \(\displaystyle\lim_{x\to{a}}g(x)\neq 0\)
גבול של פונקציה מעריכית \(\displaystyle\lim_{x\to{a}}{a^{f\left(x\right)}}=a^{\displaystyle\lim_{x\to{a}}{f\left(x\right)}}\)
גבולות נפוצים \(\displaystyle\lim_{x\to{0}}{\dfrac{\sin\left(x\right)}{x}}=1\) וכן \(\displaystyle\lim_{x\to{\infty}}{(1+\dfrac{1}{x})^x}=e\)
משפט הסנדוויץ': אם \(g\left(x\right)\leq f\left(x\right)\leq h\left(x\right)\) וכן \(\displaystyle\lim_{x\to{a}}g(x)=\lim_{x\to{a}}h(x)=L\;\Rightarrow\;\lim_{x\to{a}}f(x)=L\)
כלל לופיטל: אם \(\displaystyle\lim_{x\to{a}}f(x)=0\) וכן \(\displaystyle\lim_{x\to{a}}g(x)=0\) (או ששני הגבולות שווים ל-\(\infty\)), אז \(\displaystyle\lim_{x\to{a}}{\dfrac{f\left(x\right)}{g\left(x\right)}}=\lim_{x\to{a}}{\dfrac{f'\left(x\right)}{g'\left(x\right)}}\)
טור טיילור \(f(x)=\sum\limits_{n=0}^{\infty}\dfrac{f^{\left(n\right)}\left(a\right)}{n!}\,\left(x-a\right)^n\)
מיישם הכפלה בצמוד, הצבות ונוסחת אוילר
מחשב גבולות דו-צדדיים \(x\to{a}\) וגם גבולות חד-צדדיים \(x\to{a^+}\)
מחשבון זה ממיר ביטוי מרוכב \(f(z)\) לצורתו האלגברית \(z=a+i\,b\), הצורה הטריגונומטרית \(z=r\cdot(\cos(\varphi)+i\,\sin(\varphi))\), והצורה האקספוננציאלית \(z=r\,e^{i\,\varphi}\) באמצעות:
מודולוס של מספר מרוכב: \(r=\left|a+i\,b\right|=\sqrt{a^2+b^2}\)
שורש של מספר מרוכב: \(\sqrt[n]{z}=\sqrt[n]{r}\,\left(\cos\left(\dfrac{\varphi+2\,\pi\,\mathrm{k}}{n}\right)+i\,\sin\left(\dfrac{\varphi+2\,\pi\,\mathrm{k}}{n}\right)\right)\)
חזקה של מספר מרוכב: \(z^n=r^n\,\left(\cos\left(n\,\varphi\right)+i\,\sin\left(n\,\varphi\right)\right)\)
ייצוב שבר על ידי הצמוד שלו: \(\dfrac{z}{a+i\,b}\;\Rightarrow\;\dfrac{z\cdot\left(a-i\,b\right)}{\left(a+i\,b\right)\cdot\left(a-i\,b\right)}\;\Rightarrow\;\dfrac{z\cdot\left(a-i\,b\right)}{a^2+b^2}\)
לוגריתם מרוכב: \(\operatorname{Log}\left(z\right)=\ln\left(r\right)+i\,(\varphi+2\,\pi\,\mathrm{k})\)
הערך הראשי של הלוגריתם המרוכב: \(\mathrm{Im}\operatorname{Log}\in(-\pi,\,\pi]\)
זהויות טריגונומטריות והיפרבוליות כגון \(\sin\left(\alpha\pm\beta\right)=\sin\left(\alpha\right)\,\cos\left(\beta\right)\pm\cos\left(\alpha\right)\,\sin\left(\beta\right)\) או \(\sinh\left(i\,b\right)=i\,\sin\left(b\right)\), ונוסחת אוילר \(e^{i\,\varphi}=\cos\left(\varphi\right)+i\,\sin\left(\varphi\right)\)
מחשבון זה מחשב ביטויי מטריצות נתונים עם המטריצות \(\mathrm{A}\), \(\mathrm{B}\) ו-\(\mathrm{C}\)
הפונקציונליות שלו כוללת פעולות מטריצות כגון: חיבור \(\mathrm{A}+\mathrm{B}\), חיסור \(\mathrm{A}-\mathrm{B}\), כפל \(\mathrm{C}\cdot\mathrm{B}\), דטרמיננטה \(\left|\mathrm{A}\right|\), שחלוף \(\mathrm{B}^{\mathrm{T}}\), דרגה \(\operatorname{rank}\mathrm{C}\), מטריצה הופכית \(\mathrm{A}^{-1}\), כפל בסקלר \(a\cdot\mathrm{B}\), או חיבור עם סקלר \(c+\mathrm{A}\)
מחשב את הנגזרת של איברי המטריצה \(\left(\mathrm{C}\right)'_x={\scriptsize\left(\begin{gathered}\left(\mathrm{a_{11}}\right)'_x&\left(\mathrm{a_{12}}\right)'_x\\\left(\mathrm{a_{21}}\right)'_x&\left(\mathrm{a_{22}}\right)'_x\end{gathered}\right)}\) או את האינטגרל של איברי המטריצה \(\int{\mathrm{A}}{\;\mathrm{d}x}={\scriptsize\left(\begin{gathered}\int{\mathrm{a_{11}}}{\;\mathrm{d}x}&\int{\mathrm{a_{12}}}{\;\mathrm{d}x}\\\int{\mathrm{a_{21}}}{\;\mathrm{d}x}&\int{\mathrm{a_{22}}}{\;\mathrm{d}x}\end{gathered}\right)}\)
מפעיל פונקציות מתמטיות \(\sin\), \(\cos\)\(\,\ldots\) על איברי המטריצה, לדוגמה \(\ln\left(\mathrm{A}\right)={\scriptsize\left(\begin{gathered}\ln\left(\mathrm{a_{11}}\right)&\ln\left(\mathrm{a_{12}}\right)\\\ln\left(\mathrm{a_{21}}\right)&\ln\left(\mathrm{a_{22}}\right)\end{gathered}\right)}\)
מחשב ערכים מספריים וכן שילובים של פעולות אריתמטיות ופונקציות