logo MathDF

Complex Numbers Calculator

Calculator converts a complex expression into its algebraic, trigonometric or exponential form, computes the modulus of a complex number, multiplies by the complex conjugate, finds the roots of a complex number, exponentiation, the principal value of the complex logarithm, applies trigonometric, hyperbolic formulas and Euler's formula
Substitute
=
random
clear
Loading content

The input recognizes various synonyms for functions such as asin, arsin, arcsin, sin^-1

Multiplication signs and parentheses are automatically added, so an entry like 2sinx is equivalent to 2*sin(x)

List of mathematical functions and constants:

ln(x)natural logarithm

sin(x)sine

cos(x)cosine

tan(x)tangent

cot(x)cotangent

arcsin(x)arcsine

arccos(x)arccosine

arctan(x)arctangent

arccot(x)arccotangent

sinh(x)hyperbolic sine

cosh(x)hyperbolic cosine

tanh(x)hyperbolic tangent

coth(x)hyperbolic cotangent

sech(x)hyperbolic secant

csch(x)hyperbolic cosecant

arsinh(x)inverse hyperbolic sine

arcosh(x)inverse hyperbolic cosine

artanh(x)inverse hyperbolic tangent

arcoth(x)inverse hyperbolic cotangent

sec(x)secant

csc(x)cosecant

arcsec(x)arcsecant

arccsc(x)arccosecant

arsech(x)inverse hyperbolic secant

arcsch(x)inverse hyperbolic cosecant

|x|, abs(x)absolute value

sqrt(x), root(x)square root

exp(x)e to the power of x

conj(z)\(\overline{z}\)

a+b — \(a+b\)

a-b — \(a-b\)

a*b — \(a\cdot b\)

a/b — \(\dfrac{a}{b}\)

a^b, pow(a,b) — \(a^b\)

sqrt7(x) — \(\sqrt[7]{x}\)

sqrt(n,x) — \(\sqrt[n]{x}\)

lg(x) — \(\log_{10}\left(x\right)\)

log3(x) — \(\log_3\left(x\right)\)

log(a,x) — \(\log_a\left(x\right)\)

ln^2(x), ln(x)^2 — \(\ln^2\left(x\right)\)

y''', y'3 — \(y'''\)

d^2y/dx^2, d2y/dx2 — \(\dfrac{\mathrm{d}^2y}{\mathrm{d}x^2}\)

lambda — \(\lambda\)

pi — \(\pi\)
alpha — \(\alpha\)
beta — \(\beta\)
sigma — \(\sigma\)
gamma — \(\gamma\)
nu — \(\nu\)
mu — \(\mu\)
phi — \(\phi\)
psi — \(\psi\)
tau — \(\tau\)
eta — \(\eta\)
rho — \(\rho\)
a123 — \(a_{123}\)
x_n — \(x_{n}\)
mu11 — \(\mu_{11}\)
<= — \(\leq\)
>= — \(\geq\)
Bookmark this pageCTRL+D
75% 90% 100% 110% 125% 🔍
Solving the problem..
Expression not found